HTML

    Select a Subtopic

    Day 17: Data Visualization with Matplotlib and Seaborn

    Let's focus on Day 17, where we dive deep into Data Visualization with Matplotlib and Seaborn! I'll guide you through the concepts, and we'll work together interactively to create some visualizations.

    Topics:
    - Creating plots with Matplotlib
    - Advanced plots with Seaborn
    - Customizing plots

    Step 1: Installing the Required Libraries

    Before we begin, you'll need to have Matplotlib and Seaborn installed. Run the following commands to install them if you haven't already:

    1 pip install matplotlib seaborn

    Step 2: Introduction to Matplotlib

    Matplotlib is the foundational library for plotting in Python. It provides a wide variety of visualizations. It's often used for quick and simple plots.

    Creating a Line Plot

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 import matplotlib.pyplot as plt # Sample Data x = [1, 2, 3, 4, 5] y = [2, 3, 5, 7, 11] # Creating the plot plt.plot(x, y) # Adding title and labels plt.title('Simple Line Plot') plt.xlabel('X Axis') plt.ylabel('Y Axis') # Display the plot plt.show()

    Creating a Bar Chart

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 # Sample Data categories = ['A', 'B', 'C', 'D'] values = [10, 24, 18, 30] # Creating a bar chart plt.bar(categories, values) # Adding title and labels plt.title('Simple Bar Chart') plt.xlabel('Categories') plt.ylabel('Values') # Display the plot plt.show()

    Creating a Pie Chart

    1 2 3 4 5 6 7 8 9 10 11 12 # Sample Data labels = ['Red', 'Blue', 'Green', 'Yellow'] sizes = [15, 30, 45, 10] # Creating a pie chart plt.pie(sizes, labels=labels, autopct='%1.1f%%') # Adding title plt.title('Simple Pie Chart') # Display the plot plt.show()

    Step 5: Introduction to Seaborn

    Seaborn is built on top of Matplotlib and offers easier-to-use functions for more advanced and beautiful plots. Let’s use Seaborn to create a Heatmap.

    Creating a Heatmap

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 import seaborn as sns import numpy as np # Creating a 2D dataset data = np.random.rand(10, 12) # Random values in a 10x12 array # Creating a heatmap sns.heatmap(data, annot=True) # Adding title plt.title('Heatmap Example') # Display the plot plt.show()

    Creating a Pairplot

    1 2 3 4 5 6 7 8 # Load an example dataset from Seaborn iris = sns.load_dataset('iris') # Create a pairplot sns.pairplot(iris, hue='species') # Display the plot plt.show()

    Interactive Exercise: Customizing Your Plots

    Now, let's practice customizing these plots!

    • 1. Line Plot Customization: Change the color of the line to red and make it dashed. Add gridlines.
    • 2. Bar Chart Customization: Change the color of the bars to green and add edge color.
    • 3. Pie Chart Customization: Explode the Blue slice slightly.

    Make these changes in your code and let me know how it goes. If you need help, just ask, and I’ll guide you!